Dual Decomposition Inference for Graphical Models over Strings

نویسندگان

  • Nanyun Peng
  • Ryan Cotterell
  • Jason Eisner
چکیده

We investigate dual decomposition for joint MAP inference of many strings. Given an arbitrary graphical model, we decompose it into small acyclic sub-models, whose MAP configurations can be found by finite-state composition and dynamic programming. We force the solutions of these subproblems to agree on overlapping variables, by tuning Lagrange multipliers for an adaptively expanding set of variable-length n-gram count features. This is the first inference method for arbitrary graphical models over strings that does not require approximations such as random sampling, message simplification, or a bound on string length. Provided that the inference method terminates, it gives a certificate of global optimality (though MAP inference in our setting is undecidable in general). On our global phonological inference problems, it always terminates, and achieves more accurate results than max-product and sum-product loopy belief propagation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Algorithms for Large Scale Learning and Inference in Graphical Models

Over the past few years we have witnessed an increasing popularity in the use of graphical models for applications in computational biology, computer vision and natural language processing. Despite the large body of work, most existing learning and inference algorithms can neither cope with large scale problems which require huge amounts of memory and computation, nor can they effectively paral...

متن کامل

Dual Decomposition from the Perspective of Relax, Compensate and then Recover

Relax, Compensate and then Recover (RCR) is a paradigm for approximate inference in probabilistic graphical models that has previously provided theoretical and practical insights on iterative belief propagation and some of its generalizations. In this paper, we characterize the technique of dual decomposition in the terms of RCR, viewing it as a specific way to compensate for relaxed equivalenc...

متن کامل

Model-Based Aligner Combination Using Dual Decomposition

Unsupervised word alignment is most often modeled as a Markov process that generates a sentence f conditioned on its translation e. A similar model generating e from f will make different alignment predictions. Statistical machine translation systems combine the predictions of two directional models, typically using heuristic combination procedures like grow-diag-final. This paper presents a gr...

متن کامل

Lifted Generalized Dual Decomposition

Many real-world problems, such as Markov Logic Networks (MLNs) with evidence, can be represented as a highly symmetric graphical model perturbed by additional potentials. In these models, variational inference approaches that exploit exact model symmetries are often forced to ground the entire problem, while methods that exploit approximate symmetries (such as by constructing an over-symmetric ...

متن کامل

MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation

We present a novel dual decomposition approach to MAP inference with highly connected discrete graphical models. Decompositions into cyclic k-fan structured subproblems are shown to significantly tighten the Lagrangian relaxation relative to the standard local polytope relaxation, while enabling efficient integer programming for solving the subproblems. Additionally, we introduce modified updat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015